A Feature-Based Approach to Automated Design of Multi-Piece Sacrificial Molds

نویسندگان

  • Savinder Dhaliwal
  • Satyandra K. Gupta
  • Jun Huang
  • Malay Kumar
چکیده

This paper describes a feature-based approach to automated design of multi-piece sacrificial molds. We use multi-piece sacrificial molds to create complex 3D polymer/ceramic parts. Multipiece molds refer to molds that contain more than two mold components or subassemblies. Our methodology has the following three benefits over the state-of-the-art. First, by using multi-piece molds we can create complex 3D objects that are impossible to create using traditional two piece molds. Second, we make use of sacrificial molds. Therefore, using multi-piece sacrificial molds, we can create parts that pose disassembly problems for permanent molds. Third, mold design steps are significantly automated in our methodology. Therefore, we can create the functional part from the CAD model of the part in a matter of hours and so our approach can be used in small batch manufacturing environments. The basic idea behind our mold design algorithm is as following. We first form the desired gross mold shape based on the feature based description of the part geometry. If the desired gross mold shape is not manufacturable as a single piece, we decompose the gross mold shape into simpler shapes to make sure that each component is manufacturable using CNC machining. During the decomposition step, we account for tool accessibility to make sure that (1) each component is manufacturable, and (2) components can be assembled together to form the gross mold shape. Finally, we add assembly features to mold component shapes to facilitate easy assembly of mold components and eliminate unnecessary degree of freedoms from the final mold assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating sacrificial multi-piece molds using accessibility driven spatial partitioning

This paper describes an algorithm based on accessibility-driven partitioning approach to automate the design of sacrificial multi-piece molds. Sacrificial multi-piece molds are used for producing geometrically complex gelcast ceramic parts. The algorithm presented in this paper analyzes the accessibility of the gross mold shape and partitions it using accessibility information. Each partitionin...

متن کامل

Manufacturability-Driven Spatial Partitioning: A Systematic Approach to Computational Shape Synthesis in Manufacturing Applications

Quite often complex shapes are not manufacturable as a single component. Due to manufacturing constraints, the desired complex object needs to be partitioned into a number of smaller and simpler manufacturable components. After manufacturing individual components, the complex object is realized by assembling various components together. Therefore, spatial-partitioning can be used to perform sha...

متن کامل

Geometric algorithms for automated design of multi-piece permanent molds

Multi-Piece molds, which consist of more than two mold pieces, are capable of producing very complex parts⎯parts that cannot be produced by the traditional molds. The tooling cost is also low for multi-piece molds, which makes it a candidate for pre-production prototyping and bridge tooling. However, designing multi-piece molds is a time-consuming task. This paper describes geometric algorithms...

متن کامل

A Region Based Method to Automated Design of Multi-Piece Molds with Application to Rapid Tooling

Particularly for rapid tooling applications, delivering prototype parts with turn-around times of less than two weeks requires fast, proven mold design methods. We present a region-based approach to automated mold design that is suitable for simple two-piece molds (consisting of core and cavity), as well as molds with many additional moving sections. In our region-based approach, part faces are...

متن کامل

A Reverse Glue Approach to Automated Construction of Multi-Piece Molds

Mold design can be a difficult, time-consuming process. Determining how to split a mold cavity into multiple mold pieces (e.g., core, cavity) manually can be a tedious process. This paper focuses on the mold construction step of the automated mold design process. By investigating glue operations and its relations with parting faces, an approach based on a new reverse glue operation is presented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Inf. Sci. Eng.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2001